Home Intel’s X48 Express chipset
Reviews

Intel’s X48 Express chipset

Geoff Gasior
Disclosure
Disclosure
In our content, we occasionally include affiliate links. Should you click on these links, we may earn a commission, though this incurs no additional cost to you. Your use of this website signifies your acceptance of our terms and conditions as well as our privacy policy.

Intel’s Core 2 Extreme QX9770 is due out this quarter, bringing with it not only four Penryn cores clocked at 3.2GHz, but also a front-side bus running at 1600MHz. That faster FSB presents a bit of a problem, though, because Intel’s current P35 and X38 Express chipsets only support front-side bus speeds up to 1333MHz. So the QX9770 needs a new chipset, or at least a new north bridge, which is where the X48 Express comes in.

Based on Intel’s existing X38 Express, the X48 brings with it official support for 1600MHz front-side bus speeds. With this faster bus, the X48 looks poised to supplant its predecessor atop Intel’s chipset lineup, which means a new wave of motherboards is coming from all the usual suspects.

Gigabyte’s X48T-DQ6 is the first X48 offering to hit our labs, and in addition to packing Intel’s latest chipset, it comes with an innovative Dynamic Energy Saver mechanism designed to lower power consumption. Join us as we put this power saving scheme to the test and run the X48 Express through it paces against the rest of Intel’s chipset lineup.

A new north bridge
The X48 Express’ defining feature is its new north bridge component—a chip that might not actually be new at all. Intel engages in a process called binning with its processors, sorting what are essentially identical chips based on the clock speeds at which they’re comfortable running. The same approach could be applied to north bridge chips, making the X48 a bin sort of X38 chips comfortable running a 1600MHz front-side bus. Based on our own experiences overclocking a couple of X38 boards to front-side bus speeds of 2000MHz and higher, we’d wager there are plenty of X38 chips up to the task of a mere 1600MHz.

X48
Express
X38
Express
P35 Express

Front-side bus
1600/1333/1066MHz 1333/1066MHz 1333/1066MHz

Memory controller
DDR2-800
DDR3-1600
DDR2-800
DDR3-1333
DDR2-800
DDR3-1066

PCI Express 1.1 lanes
0 0 16

PCI Express 2.0 lanes
32 32 0

Multi-GPU support
CrossFire CrossFire CrossFire*

Chipset interconnect
DMI DMI DMI

Peak interconnect bandwidth
2GB/s 2GB/s 2GB/s

Apart from its faster system bus, the X48’s features mirror those of the X38 Express. Both feature 32 second-generation PCI Express lanes, providing substantial bandwidth to not only single graphics cards, but also CrossFire configurations. However, despite working with Nvidia to bring SLI support to its Skulltrail platform, Intel’s desktop chipsets remain locked out of the green team’s multi-GPU rendering scheme. That strikes us as particularly petty on Nvidia’s part, and while it blunts some of the X48’s appeal, CrossFire has matured into a viable and in some cases preferable alternative to SLI.


The X48 Express north bridge chip cap

Falling prices have kept DDR2 memory popular among enthusiasts, so it’s a good thing the X48 retains support for the older memory type. Expect the first X48 boards to have DDR3 memory slots, though. Based on our conversations with motherboard makers, it looks like most are aiming for DDR3 first, with DDR2 offerings to follow.

On the DDR3 front, the X48 should support memory bus speeds up to 1600MHz. However, depending on your motherboard, that top memory speed may only be available if you’re also running a 1600MHz front-side bus. Our Gigabyte X48T-DQ6 lacks the dividers necessary to run 1600MHz memory with a 1333MHz FSB, for example, and others are also likely to face this limitation. Motherboard makers have some leeway when it comes to defining bus dividers, which is why you’ll find plenty of P35 Express boards capable of clocking DDR3 memory at 1333MHz, despite the fact that the chipset only officially supports memory bus speeds up to 1066MHz.


Hardly a secret, the ICH9R shows up at the south bridge

While it’s unclear whether the X48 north bridge chip is merely a carefully selected and further validated X38, the chipset’s south bridge component is Intel’s existing ICH9R. Don’t let the “Secret” chip marking fool you; this is the same silicon Intel launched last summer with the P35 Express. Nearly a year after its initial launch, the ICH9R still packs a competitive feature set, including six SATA RAID ports, 12 USB ports, and six gen-one PCI Express lanes. Intel also says the ICH9R has an embedded Gigabit Ethernet controller, although we’ve yet to see a motherboard actually make use of it.

DDR3 rises to the occasion
Intel first cracked the seal on DDR3 memory with its P35 Express chipset, and at the time, the new memory type hardly looked poised to take over from DDR2. Prices were too high, for one, and DDR3 hadn’t yet ramped to significantly higher clock speeds than existing DDR2 modules. But times have changed, speeds have scaled, and prices have fallen.

Today, DDR3 memory is available at speeds as high as 2000MHz. That’s an impressive milestone considering that DDR3 started out at roughly half that speed nearly a year ago. Those of us who have been around for a while will remember that DDR2 certainly didn’t ramp this quickly after its initial launch.

Unfortunately, there’s still an inescapable price premium associated with DDR3. Modules like Corsair’s CM3X1024-1600C7DHX, which are rated for 7-7-7-20 timings at 1600MHz, run about $400 for a 2GB dual-channel kit. Believe it or not that’s an improvement over what was available last summer, when $400 would have only bought you a 2GB kit of DDR3-1066 memory rated for 9-9-9-24 timings. The price of 2GB DDR3-1066 kits has fallen to around $220.

Despite falling DDR3 prices, the fact that the bottom has essentially dropped out of the DDR2 memory market makes for a tough sell. DDR3 is undoubtedly the future, but when you can get 2GB of DDR2 for less than $50, paying more than four times the price for DDR3 is difficult—if not impossible—to justify rationally.

Gigabyte’s X48T-DQ6
Remixed for X48

Manufacturer Gigabyte
Model X48T-DQ6
Price (MSRP) $300
Availability Soon

While the X48 Express may not offer a whole lot in terms of new features and capabilities, at least it’s spawned a wave of exciting new motherboard designs, right? Well, not exactly. Because the X48 and X38 chipsets are so similar, motherboard makers have been able to dip into their existing product lines for more than just inspiration. Gigabyte’s X48T-DQ6, for example, bears an uncanny resemblance to the company’s X38-DQ6. There are a few minor differences here and there, such as the size of the north bridge heatsink and the placement of a few onboard components, but the overall design appears unchanged.

Not that there’s anything wrong with that. We quite liked the X38-DQ6 and even gave it a TR Recommended award, so there’s something to be said for not messing with the formula.

For Gigabyte, part of that formula includes “Ultra Durable 2” branding that denotes the use of higher quality electrical components, including solid-state capacitors, ferrite core chokes, and low-resistance MOSFETs. High quality components should be a given for motherboards in this price range, but that’s sadly not always the case, which I suppose is why Gigabyte makes such a fuss over its Ultra Durable brand. Never mind that the same Ultra Durable components can be found on a number of the company’s more affordable mid-range boards, as well.

Another element to Gigabyte’s formula is a turquoisy blue board color that has persisted for as long as I can remember. As other manufacturers plunder every color in the rainbow, and even a few that aren’t, Gigabyte has remained faithful to a single unique hue—one that neatly matches the company’s graphics cards, too.

I have to admit that the combination of a blue board with copper heatsinks looks fantastic. Sure, the board will be hidden away in an enclosure and perhaps only occasionally observed through a case window, but if you’re going to build up a high performance hot rod you might as well make sure the engine bay is easy on the eyes.

The engine, in this case, would be a processor to slide into the X48T’s LGA775 socket. Gigabyte keeps the socket area relatively free of obstructions, using low profile capacitors in areas that might interfere with standard heatsink designs. Larger aftermarket coolers that fan out from the CPU socket might conflict with the board’s beefy north bridge cooler, though.

Passive chipset and VRM cooling is provided by a set of copper heatsinks tied together by a modest (at least by today’s motherboard standards) heatpipe network. This relatively simple arrangement puts surface area before flashy excess, and unlike some passively cooled motherboards, you don’t need to strap on a noisy chipset fan to overclock the front-side bus.

The X48T’s cooling apparatus extends to the underside of the board, as well. Here, we find finned metal back plates for the south bridge, north bridge, and the CPU socket itself. The socket back plate can also be removed if you want to use an aftermarket processor heatsink with a back plate of its own.

On the flip side, Gigabyte neatly arranges the X48T’s storage-related ports in the bottom right-hand corner of the board. Here we find six orange SATA ports hanging off the ICH9R south bridge with an additional two purple ports making an appearance courtesy of a JMicron controller rebranded as a Gigabyte GSATA chip. This auxiliary storage controller is also responsible for the board’s IDE port.

More interesting than the origins of the X48T’s SATA ports is their placement. Gigabyte shows particular attention to detail here, ensuring that longer double-wide graphics cards won’t block access to any of the onboard SATA ports. Longer expansion cards won’t interfere with the board’s low-profile south bridge heatsink, either.

Gigabyte’s board designers deserve a gold star for the X48T’s expansion slot layout, too. The board features a good mix of PCI Express x16, x1, and standard PCI slots. Even with a double-wide CrossFire config, you’ll still have two PCIe x1s and a standard PCI slot to play with.

A year ago, we would have rather seen Gigabyte bias the slot X48T’s configuration towards standard PCI slots. However, with sound cards like Asus’ Xonar D2X making their way to PCI Express, we’re running out of reasons to keep standard PCI slots around.

The X48T certainly packs plenty of expansion capacity without them. Just look at the port cluster, which houses eight USB ports and two flavors of Firewire. You get a pair of S/PDIF digital audio outputs, too: one TOS-Link and one coaxial. And because the board uses Realtek’s swanky ALC889A codec chip, it’s possible to encode multi-channel audio into a DTS Connect stream that can be passed through the board’s digital output ports.

External Serial ATA connectivity is conspicuously missing from the X48T’s backplane, but that’s because Gigabyte has a more flexible solution bundled in the box. Rather than tying eSATA to port cluster connectors arbitrarily assigned to an onboard storage controller, Gigabyte lets you roll your own eSATA connections using any internal Serial ATA port. A PCI back plate provides the external Serial ATA interface, with additional cabling—including power if you want to quickly hook up a standard internal hard drive outside your system—to make it all work. This solution may not be as clean of an implementation as a backplane eSATA connector, but I’ll gladly swallow a little cable clutter for the ability to pick and choose which SATA ports get routed to the outside world.

BIOS options galore
Official support for a 1600MHz front-side bus makes the X48 Express chipset a prime candidate for more extreme overclocking exploits, and Gigabyte has ensured that the X48T-DQ6’s BIOS is up to the task.


Bus speeds
FSB: 100-700MHz in
1MHz increments
PCIe: 90-150MHz in 1MHz increments

Bus multipliers
CPU: 6x-8x (Core
2 Duo E6750)
DRAM: 2, 2.4, 2.5, 2.66, 3, 3.2, 3.33, 4
Voltages CPU:0.5-2.35V in 0.00625V increments
DRAM: +0.05-1.55V in 0.05V increments
PCIe: +0.05-0.75V in 0.05V increments
FSB: +0.05-0.035V in
0.05V increments
MCH:
+0.025-0.775V in 0.025V increments
CPU GTLREF2:
-3-9% in 3% increments
CPU/PCIe driving control: 0.7-1V in 0.1V increments

Monitoring
Voltage, fan
status, and temperature monitoring

Fan speed control
CPU

Front-side bus speed options are actually available up to 700MHz (2800MHz quad-pumped), giving potential overclockers more than enough of headroom to play with. A total of eight multipliers yields plenty of memory bus speed options, as well.

The BIOS really shines in the voltage department, where users have control over seven different system voltage settings. Extreme overclockers will be pleased to note that CPU core voltage options are available up to a whopping 2.35V in ultra-fine 0.00625V increments. If you prefer to underclock, you can lower the core voltage to as little as 0.5V with the same granularity. Memory overvolting options are also impressive, allowing users to push an additional 1.55V on top of DDR3’s default voltage of 1.5V.

As one might expect, the BIOS also includes all the usual memory timings. Temperature-based fan speed control makes an appearance, as well, but only for the CPU fan, and without arbitrary control over actual fan speeds and target temperatures. It’s a little disappointing to see motherboard makers dedicating so little attention to an important feature like temperature-based fan speed control. Just about every enthusiast-oriented motherboard that has passed through our labs in the last couple of years has offered more than enough options on the overclocking front, but precious few give users meaningful control over fan speed profiles.

A new Dynamic Energy Saver feature that Gigabyte has rolled out in its latest motherboards suggests that the company is at least serious about reducing power consumption. This functionality isn’t exposed through the BIOS (at least not yet, although it’s something that Gigabyte is working on), but rather through Windows software bundled with the X48T-DQ6.

When enabled, DES dynamically scales the number of power phases used to feed the processor based on system load. A minimum of four power phases are active at all times, with additional phases activated in pairs. Since our X48T has 12-phase power, DES can choose from five different phase configurations.

Gigabyte’s DES Windows app lets users keep tabs on how many power phases are in use at a given time. More interestingly, it also calculates how many watts a system’s processor is using, feeding that information into a counter that tracks overall power savings. We’ll see just how well DES works when we probe power consumption a little later in this review.

Specifics on specifications
If you prefer your motherboard specifications carefully compiled into a single chart, the one below details Gigabyte’s X48T-DQ6. Knock yourself out.


CPU support
LGA775-based
Celeron, Pentium 4/D, Core 2 processors

North bridge
Intel X48 Express

South bridge
Intel ICH9R

Interconnect
DMI (2GB/s)

Expansion slots
2 PCI Express x16
3 PCI Express x1
2 32-bit/33MHz PCI

Memory
4 240-pin DIMM
sockets
Maximum of 8GB of DDR3-1066/1333/1600 SDRAM

Storage I/O
Floppy disk
1 channel ATA/133 via JMicron JMB363
6 channels 300MB/s Serial ATA with RAID 0, 1, 10, 5 support
2 channels
300MB/s Serial ATA with RAID 0, 1 support via JMicron JMB363
Audio 8-channel HD audio via Realtek
ALC889A codec
Ports 1 PS/2 keyboard
1 PS/2 mouse
8
USB
2.0 with headers for 4 more

2 RJ45 10/100/1000 via Realtek RTL8111B
2 1394a Firewire via
Texas Instruments TSB43AB23 with header for 1 more

1 front out
1 analog bass/center out
1 analog rear out
1 analog surround out
1 analog line in
1 analog mic in
1 digital coaxial S/PDIF out
1 digital TOS-Link S/PDIF
out

Our testing methods
Since the bulk of initial X48 boards appear to be of the DDR3 variety, we’ve evened the playing field and used DDR3 all around. This restricts our comparative platforms to Intel chipsets, notably DDR3 boards based on the X38 and P35 Express. Nvidia doesn’t yet have a DDR3 chipset for Core 2 processors, so the nForce platform will have to ride the pine this time around. Check our nForce 780i SLI review for the latest on the green team’s Core 2 chipsets.

All tests were run three times, and their results were averaged.

Processor

Core 2 Duo E6750 2.67GHz
System bus 1333MHz (333MHz
quad-pumped)

Motherboard


Asus P5K3 Deluxe


Asus P5E3 Deluxe
Gigabyte X48T-DQ6
Bios revision 0604 0201 F4D

North bridge
Intel P35 Express Intel X38 Express Intel X48 Express

South bridge
Intel ICH9R Intel ICH9R Intel ICH9R
Chipset drivers Chipset 8.3.1.1009
AHCI 7.8.0.1012
Chipset 8.3.1.1009
AHCI 7.8.0.1012
Chipset 8.3.1.1009
AHCI 7.8.0.1012
Memory size 2GB (2 DIMMs) 2GB (2 DIMMs) 2GB (2 DIMMs)

Memory type


Corsair CM3X1024-1600C7DHX DDR3 SDRAM
at 1333MHz
CAS latency
(CL)
7 7 7
RAS to CAS
delay (tRCD)
7 7 7
RAS precharge
(tRP)
7 7 7
Cycle time
(tRAS)
21 21 21
Command rate 1T 1T 1T

Audio codec
Integrated

AD1988B with 5.10.1.6110 drivers

Integrated AD1988B with
7.0.0.0 drivers
Integrated ALC889A with 1.88
drivers
Graphics

GeForce 8800 GT 1GB PCIe
with ForceWare 169.25 drivers
Hard drive
Western Raptor X 150GB
OS

Windows Vista Ultimate x86
with KB936710, KB938194, KB938979, KB940105
updates

Thanks to Corsair for providing us with memory for our testing. 2GB of RAM seems to be the new standard for most folks, and Corsair hooked us up with some of its 1GB DIMMs for testing.

All of our test systems were powered by OCZ GameXStream 700W power supply units. Thanks to OCZ for providing these units for our use in testing.

Finally, we’d like to thank Western Digital for sending Raptor WD1500ADFD hard drives for our test rigs. The Raptor’s still the fastest all-around drive on the market, and the only 10K-RPM Serial ATA drive you can buy.

We used the following versions of our test applications:

The test systems’ Windows desktop was set at 1280×1024 in 32-bit color at an 85Hz screen refresh rate. Vertical refresh sync (vsync) was disabled for all tests.

All the tests and methods we employed are publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.

Memory performance

With the same DDR3 DIMMs running at 1333MHz with 7-7-7-20 timings, we see little difference in memory performance between Intel’s top three chipsets. The X48 and X38 are all but even here, with the P35 only pulling up a little short in the bandwidth test.

Memory controllers don’t always handle four DIMMs gracefully, so we popped an additional two memory modules into each system for another round of tests.

Four DIMMs certainly don’t favor the X48. Not only does Intel’s flagship deliver the lowest bandwidth scores and highest access latencies here, the budget P35 Express vaults into the lead. Gigabyte is still tweaking the X48’s BIOS, and this looks like one area where performance could definitely be improved.

The following latency graphs are a little indulgent, so I won’t be offended if you skip them. They show access latencies across multiple block and step sizes, painting a fuller picture of memory controller performance with each chipset. I’ve arranged the graphs in order of highest latency to lowest, taking results from testing with two DIMMs. Yellow represents L1 cache, light orange is L2, and dark orange is main memory.

While the P35 is clearly slower than its high-end counterparts when accessing larger blocks with a step size of 128, there’s little difference between the X38 and X48 here.

STARS Euler3d computational fluid dynamics
Few folks run fluid dynamics simulations on their desktops, but we’ve found this multi-threaded test to be particularly demanding of memory subsystems, making it a good link between our memory and application performance tests.

Score one for the X48, which narrowly edges out the P35 Express in this test. The X38 is a little slower still, although scores for all three are quite close.

WorldBench
WorldBench uses scripting to step through a series of tasks in common Windows applications. It then produces an overall score. WorldBench also spits out individual results for its component application tests, allowing us to compare performance in each. We’ll look at the overall score, and then we’ll show individual application results alongside the results from some of our own application tests.

Only three points separate our chipsets in WorldBench’s overall score, but the X48 Express finds itself at the bottom of the pile. Let’s see if we can find out why by breaking down the overall score into bite-sized application tests.

The X48 actually comes out ahead in two of WorldBench’s three multimedia editing and encoding tests, although never by more than a couple of seconds.

Scores are also tight through WorldBench’s office and multitasking tests.

WorldBench’s 3dsmax tests can’t coax much of a performance difference out of the chipsets, either.

Nero and WinZip do, however. In the former, the X48 finds itself at the back of the pack by a good 30 seconds. Things only get worse in WinZip, where the X48 is a full 50 seconds off the pace set by the X38 Express.

We’ve seen Vista’s (supposedly) intelligent disk caching mechanism affect WorldBench performance in these last two application tests, so I wouldn’t put much stock in the X48 actually being slower than the X38 and P35 here.

Gaming

Even at relatively low resolutions, we see little difference in game performance between the X48 and Intel’s other chipsets. The X48 does come out on top across the board, but only by the slimmest of margins in most tests.

Power consumption
We measured system power consumption, sans monitor and speakers, at the wall outlet using a Watts Up Pro power meter. Power consumption was measured at idle and under a load consisting of a multi-threaded Cinebench 10 render running in parallel with the “rthdribl” high dynamic range lighting demo. We also ran a set of tests on the Gigabyte X48 board with its Dynamic Energy Saver software activated.

The X48 Express isn’t much more power-hungry than its predecessor. Gigabyte’s Dynamic Energy Saver helps a little, too, although its effects are more pronounced under load than they are at idle. Interestingly, the DES application indicated that our test system was only making use of eight of 12 power phases when under load.

Don’t pay too much attention to the P35 Express numbers here. The Asus P5K3 Deluxe motherboard we used for testing is known for having higher power consumption than other P35 boards.

Overclocking
For our overclocking tests, we dropped our CPU multiplier to 6X—its lowest possible value. Next, we dropped the memory bus multiplier to 2X to keep our DDR3 modules from limiting front-side bus speeds. With that set, our attention turned to cranking the front-side bus, which we did in 10MHz increments, testing stability with a combined load of Prime95 and the rthdribl HDR lighting demo along the way.

Overclocking the X48T-DQ6 proved easy until we hit around 440MHz. For whatever reason, the board just wasn’t stable between that speed and 470MHz, where no amount of fiddling with chipset, front-side bus, or even processor voltages would get it through our stability test. However, the X48T was rock solid with default voltages when we pushed the FSB to 480MHz and then 500MHz, where we finally hit the wall.

A 500MHz (2000MHz with quad-pumping taken into account) front-side bus is hardly a new milestone for Core 2 overclocking—X38, P35, and even nForce boards have been playing in that range for a while now—but it’s still fast enough for all but the most extreme overclocking exploits.

As is always the case with overclocking, your mileage may vary.

Motherboard peripheral performance
Core logic chipsets integrate a wealth of peripherals, but they don’t handle everything. Firewire and audio are farmed out to auxiliary chips, for example. Intel chipsets also rely on third-party silicon for networking, and many motherboards feature additional SATA controllers to complement south bridge Serial ATA offerings.

To provide a closer look at the peripheral performance you can expect from the motherboards we’ve tested today, we’ve complied Ethernet, USB, Firewire, Serial ATA, and Audio performance results below. We’ve even thrown in some PCI and PCIe performance tests. However, since the P35, X38, and X48 chipsets all use the same ICH9R south bridge, don’t expect meaningful performance differences between the boards in tests that probe the south bridge alone.

NTttcp Ethernet
performance
Throughput (Mbps) CPU utilization (%)

Asus P5E3 Deluxe (88E8056)
938.775 14.60

Asus P5E3 Deluxe (RTL8169)
378.837 39.58

Asus P5K3 Deluxe (88E8056)
937.432 15.21

Asus P5K3 Deluxe (RTL8169)
361.517 37.80

Gigabyte X48T-DQ6 (1)
930.312 46.65

Gigabyte X48T-DQ6 (2)
931.402 46.61

The X48T-DQ6’s onboard Gigabit Ethernet controllers provide plenty of throughput, but CPU utilization is higher than we’d like to see. Note that Asus boards have particularly low throughput with their PCI-based RTL8169 GigE chipsets. We’ve seen higher scores from those boards before, suggesting that something in our latest test system configuration is holding back performance here.

PCI Ethernet
performance
Throughput (Mbps) CPU utilization (%)

Asus P5E3 Deluxe
89.342 2.90

Asus P5K3 Deluxe
85.299 3.28

Gigabyte X48T-DQ6
78.194 3.28

Slow PCI Gigabit Ethernet performance persists when we toss a discrete networking card into each system. Throughput is positively dismal here, and we observed similarly low scores when recently testing Intel’s G35 chipset. We’ve also seen much higher PCI throughput with the Asus boards in previous reviews.

Since lower PCI Ethernet throughput seems to be tied to something in our latest system configurations, I wouldn’t count it against any of the boards here. We’ve contacted Intel about the issue and they’re looking into it.

PCI Express Ethernet
performance
Throughput (Mbps) CPU utilization (%)

Asus P5E3 Deluxe
938.953 19.57

Asus P5K3 Deluxe
937.762 18.61

Gigabyte X48T-DQ6
927.387 18.16

There’s certainly nothing wrong with PCI Express throughput.

HD Tach USB
performance

Read burst
speed (MB/s)

Average read
speed (MB/s)

Average write
speed (MB/s)

CPU utilization
(%)

Asus P5E3 Deluxe
33.9 32.5 29.9 4.3

Asus P5K3 Deluxe
33.9 32.6 25.9 4.0

Gigabyte X48T-DQ6
33.9 32.6 30.1 5.7

USB performance looks pretty good, too. Curiously, though, the P5K3 Deluxe is a little slower than the others here, despite the fact that it shares the same ICH9R USB controller.

HD Tach
Firewire performance

Read burst
speed (MB/s)

Average read
speed (MB/s)

Average write
speed (MB/s)

CPU utilization
(%)

Asus P5E3 Deluxe
42.3 37.5 28.8 1.7

Asus P5K3 Deluxe
42.3 37.4 28.7 0.7

Gigabyte X48T-DQ6
42.1 37.5 28.7 2.3

None of these boards skimp in the Firewire department, so we have excellent performance across the board.

HD Tach Serial
ATA performance

Read
burst
speed
(MB/s)

Average
read
speed
(MB/s)

Average
write speed
(MB/s)

CPU
utilization
(%)

Random
access
time
(ms)

Asus P5E3 Deluxe
133.5 75.2 101.0 2.0 8.4

Asus P5K3 Deluxe
133.7 75.2 98.7 3.7 8.3

Gigabyte X48T-DQ6 (ICH9R)
133.2 75.2 94.5 2.7 8.3

Gigabyte X48T-DQ6 (JMB363)
129.5 75.2 47.4 5.3 8.1

Write speeds are a little slow for the X48T’s JMicron storage controller, but that may be because it doesn’t employ Native Command Queuing. The relatively high scores we see in HD Tach’s write speed test seem to only occur with storage controllers that implement NCQ.

RightMark Audio
Analyzer audio quality

Overall score

Frequency response

Noise level

Dynamic range

THD

THD + Noise

IMD + Noise

Stereo Crosstalk

IMD at 10kHz

Asus P5E3 Deluxe
4 5 3 3 3 1 3 4 3

Asus P5K3 Deluxe
4 5 3 1 3 1 3 4 3

Gigabyte X48T-DQ6
4 5 3 3 3 1 3 4 3

Nothing to see here. Move along.

Conclusions
The X48 Express is a solid addition to Intel’s chipset lineup, and a necessary one given the upcoming Core 2 Extreme QX9770’s 1600MHz front-side bus. However, apart from the faster system bus, the X48 does little to differentiate itself from Intel’s existing X38 Express. Unless you’re looking to run a processor that demands a 1600MHz FSB or want a guaranteed front-side bus overclock to that speed, we see little incentive to opt for the X48 over Intel’s other chipsets. For all practical purposes, the X38 and P35 Express are every bit as fast as the X48, at least when running on a 1333MHz front-side bus.

One thing that the X48 will bring to the table, or rather the market, is a new batch of high-end LGA775 motherboards. Don’t bet on seeing many designs that differ radically from current X38 boards, though. Gigabyte’s X48T-DQ6, for example, is quite similar to the company’s X38 offerings. That’s a great foundation to work with, and the result is a quality motherboard rich in features and BIOS options, but there isn’t much in the way of new hotness.

At least Gigabyte has rolled out something innovative with its Dynamic Energy Saver tech, which through the magic of dynamically processor power phase scaling, is capable of lowering power consumption at idle and particularly under load. DES isn’t exclusive to the X48T, though; you’ll be able to get it on a whole slew of Gigabyte boards, including less expensive mid-range models.

It’s those affordable mid-range models that really ruin things for not only the X48 Express, but also the X48T-DQ6. Gigabyte’s suggested retail price for the board is $300, and we’d expect most X48 boards to ring up in the same range. That’s double the cost of P35 offerings that boast comparable performance, and based on our own experiences, have no problems overclocking to 1600MHz front-side bus speeds and beyond.

For enthusiasts in search of the sweet spot, the X48 Express misses the mark. However, it’s a fine chipset and a fitting flagship for upcoming processors that require a 1600MHz front-side bus.

Latest News

Lenovo Plans To Introduce A New Generation Of AI PCs
News

Lenovo Plans to Introduce a New Generation of AI PCs with Native AI Features

5 Major Tech Companies Announce Fresh Layoffs in March
News

5 Major Tech Companies Announce Fresh Rounds of Layoffs in March

Another month, another round of layoffs – the tech industry has been hit by multiple rounds of layoffs ever since life resumed after the pandemic and it looks like we...

Bitcoin ETF Records Inflows After Bottoming Out Favoring Self-Custody Investors
Crypto News

Bitcoin ETF Records Inflows After Bottoming Out Favoring Self-Custody Investors

Bitcoin appears to have found a sturdy floor, as dip buyers have emerged with conviction from institutional and individual investor camps.  Available data points to heavy accumulation from self-custodial holders,...

Coinbase Gears Up To Onboard Business Onchain With Plans To Store Users’ USDC On Base
Crypto News

Coinbase Gears Up To Onboard Business Onchain With Plans To Store Users’ USDC On Base

Bitcoin Primed for Massive Short Squeeze as Institutions Refuse to Blink
Crypto News

Bitcoin Primed for Massive Short Squeeze as Institutions Refuse to Blink

Shiba Inu Exceeded Expectations, Says Ethereum Founder Vitalik Buterin
Crypto News

Shiba Inu (SHIB) Exceeded Expectations, Says Ethereum Founder Vitalik Buterin

Ripple (XRP) Gained Massively from Recent Market Boom, Forbes Report
Crypto News

Ripple (XRP) Gained Massively from Recent Market Boom, Forbes Report